CERCA Canada Excellence Research Chair Laureate Program

Tesla 2170 Cell Data and SOC Estimation Blind Modeling Tool – Users Guide

McMaster Automotive Resource Centre (MARC) Phillip Kollmeyer, Ph.D., Member IEEE Senior Principal Research Engineer McMaster University kollmeyp@mcmaster.ca electrification.mcmaster.ca

> McMaster University

BRIGHTER WORLD | CERC@MARC

Motivation

- Hundreds of SOC estimation methods proposed in literature
- All tested in **different** ways though! • (different data, testing methods, etc)

Standardized comparison method is needed

Example comparison of machine learning SOC estimators

ML Method	Lowest Error (only at 25°C)	Data Profiles	Battery	Multi-Temperature
FNN[11]	0.33%(RMSE)@WLTC 0.27%(MAE) @WLTC	FTP75, NEDC, US06, GUDC, Highway, WLTC	LFP (12V, 8Ah)	No
FNN[13]	0.84% ** *(MAE)@ US06 0.61% (MAE)@ HWFET	HWFET and US06	[40]Li-ion Panasonic NCR18650PF	-20°C, -10°C, 0°C, 10°C , and 25°C
FNN w/ UKF[15]	1.4%(RMSE)@FUDS 2.5%(RMSE)@US06	FUDS, US06, DST	LFP (2.3Ah max)	0°C, 10°C, 20°C, 25°C, 40°C, and 50°C
FNN w/ECM[14]	0.33% (MAE)@FUDS	FUDS, DST	LFP (24V, 20Ah)	No
FNN w/ BSA[21]	0.81%(RMSE)@DST 0.91%(RMSE)@FUDS	FUDS, DST	NMC (3.6V, 2Ah)	0°C, 25°C, and 45°C
RBF w/ EKF[23]	~3% (RMSE)@CCC+	Constant current charging (CCC)	Li-ion (1.2Ah)	No
RBF w/ H∞[25]	0.7%(RMSE) @CCC+	Constant current charging (CCC)	Li-ion (1.2Ah)	No
RBF w/ UKF[26]	~3% (RMSE)@CCC+	Constant current charging (CCC)	Li-ion (1.2Ah)	No
RBF w/ RSMO [27]	2.32%(RMSE)@UDDS+ 2.33%(RMSE)@HWY+	UDDS, Highway	Lithium-polymer, Turnigy (3.7V, 0.5Ah)	No
RBF w/ AEKF [29]	<2%(MAE)@DST+	DST, HPPC	Lithium-polymer (3.7V, 32Ah)	No
RNN [38]	0.57%(MAE)@++++	HWFET, UDDS, LA92, and US06	[40] Li-ion Panasonic NCR18650PF (3.6V, 2.9Ah)	0°C, 10°C, and 25°C
RNN [42]	0.32%(MAE)@LA92	Panasonic: HWFET, UDDS, LA92,	[40] Li-ion Panasonic	0°C, 10°C, 25°C, and 40°C (Panasonic)
((iii) [+2]	0.86%(MAE)@ BJDST	Samsung: FUDS, US06, BJDST	Li-ion Samsung 18650-20R	0°C, 25°C, and 45°C (Samsung)
RNN [46]	NMC: 0.77%(MAE)@+ LFP: 1.72%(MAE)@+	DST	BAK B18650CD A123 18650 (LFP)	0°C, 25°C, 20°C, 30°C, 40°C, 50°C
RNN[50]	LFP :0.53%(RMSE) @++ LTO :0.70%(RMSE) @++	Dynamic char./discharge profile++	LFP (3.6V) LTO(2.6V)	0°C, 10°C, 25°C, and 40°C
ELM w/ AUKF[31]	0.4%(RMSE)@++	Constant pulse discharging current**	Samsung 2.6Ah	No
SVM[33]	0.4%(RMSE)@DST	DST	LFP (3.6V, 60Ah)	No

References listed in: C. Vidal, P. Malysz, P. Kollmeyer and A. Emadi, "Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art," in IEEE Access, vol. 8, pp. 52796-52814, 2020. doi: 10.1109/ACCESS.2020.2980961.

Blind Modeling Tool Concept

- Blinded Data and Testing
- Standardized dataset for SOC estimator parametrization / training
- Standardized method for testing SOC estimators with <u>blinded</u> data

Publishing Results from Tool

- Please **use** shared data and blind modeling tool **results** in your research •
- **More** published studies using tool = **More** opportunities for comparison ۲

Cite this paper when using data/tool:

P. J. Kollmeyer, M. Naguib, F. Khanum and A. Emadi, "A Blind Modeling Tool for Standardized Evaluation of Battery State of Charge Estimation Algorithms," 2022 IEEE Transportation Electrification Conference & Expo (ITEC), 2022, pp. 243-248, doi: https://doi.org/10.1109/ITEC53557.2022.9813996

Abstract- There are hundreds of approaches to estimating battery state of charge (SOC). It is difficult to compare results reported in different papers because each typically uses a different dataset. While some papers compare multiple SOC estimation algorithms. the author's bias, skill, or effort towards each algorithm may unintentionally skew the results. A standardized way to test and compare methodologies between authors is necessary to allow the best algorithms to stand out. An example in another application area is the National Institute of Standards (NIST) Face Recognition Vendor Test, which compares facial recognition software using a standardized dataset. A similar approach is proposed here for batteries, where data is provided for users to parameterize and train their algorithms. An online tool is provided to subject the algorithms to a wide range of blinded test cases. A high-quality dataset is prepared using battery cells from a prevalent electric vehicle. A total of sixty-four drive cycles are performed at each of six temperatures ranging from -20 °C to 40 benchmark and compare their algorithms.

I. INTRODUCTION

norma (SOC) actimation the EV annivalant of a fuel more for

The experimental results were kept blind from the contestants, so their modelling techniques were not influenced by awareness of the correct solution. Another example is the National Institute of Standards (NIST) Face Recognition Vendor Test (FRVT) [6], which uses actual images taken at immigration checkpoints to benchmark the accuracy of various facial recognition algorithms. A ranking for the tested algorithms is published, and each algorithm is given a score based on the face recognition accuracy.

To address the challenge of fairly comparing battery SOC estimation techniques, a blind modelling tool is proposed in this work. Battery characterization and drive cycle data are provided to the users to develop and test their SOC estimation algorithm. The users then submit their algorithm via a web °C. The blind modelling tool is demonstrated for one SOC portal, and the algorithm is tested with a variety of drive cycles estimation algorithm. It will be made available for researchers to and test cases to which they are blind. The error for each test case is returned to the user, and these error values can be used as a standardized metric to compare algorithms proposed by different researchers. A specialized reference dataset is created for the modelling tool by testing four Tesla/Panasonic 2170, Lithium-ion (Li-ion) batteries have been widely adopted for 4.5Ah cells, with drive cycles modelled for the Tesla Model 3 powering electric vehicles (EVs). Accurate battery state of EV at a range of temperatures. A total of 384 unique drive

Presentation Summary

Table of Contents

1. Battery Data

2. File Concatenation Tool

3. Example SOC Estimator

4. Blind Test Submission Tool

- Cell cycling, 17 channels, up to 600A
- Pack cycling: up to 1,000V/400A or 500V/800A
- Three thermal chambers, one chiller
- Integrated explosive gas sensing and fire suppression

Tests Performed in McMaster Laboratory

BRIGHTER WORLD | CERC® MARC

Example Battery Test Setups

See "3-McMaster Battery Lab Overview" for more lab details

8

Battery Cycler and Thermal Chamber used for Tests

- 16 ft³, -30 to 177 °C
- +/- 0.3 °C accuracy
- 1.5kW cooling @ -30 °C
- Serial control interface

- 8 x 60A, 0-5V channels
- Parallel channels for 480A
- 0.04% of range accuracy, error low as +/-8µA

Arbin Cell Tester Specifications

Voltage	0V to 5V
Current	60A per channel
# of channels	8
Parallel operation	2 to 8 sequential channels can be operated in parallel
Series operation	Series connections cannot be made
Input impedance	50 ΜΩ
Current Range	+/- 60A, 5A, 500mA, 20mA
Control Accuracy	+/- 24mA, 2mA, 200μA, 8μA (0.04%) +/- 2mV (0.04%)
Max command rate	5ms
Max system log rate	2000 samples per second
Temperature Sensing	16 channels, type T thermocouples
Control Software	Arbin MITS 8.0

Description of Cells Tested

- Source: Tesla Model 3 Battery Pack
- Form Factor: Cylindrical, 2170
- Capacity at Start of Tests: Around 4.7 Ah

Tesla cells in chamber

Tesla Model 3

ENGINEERING

BRIGHTER WORLD | CERC®MARC

Tests Performed on Cells

Four battery cells tested

- Drive cycle power profiles created using vehicle model of Tesla Model 3 EV standard range (50kWh pack)
- Each cell has different combination of payload mass and HVAC on/off condition

	Payload	HVAC	Referenced
Cell	Mass (kg)	Enabled	Name
1	80 kg	Yes	m80
2	448 kg	Yes	m448
3	448 kg	No	m448-N
4	1000 kg	Yes	m1000

Battery Cell Test Case Open data Tests performed at -20, -10, 0, 10, 25, 40 °C m1000 m448 m80m448-N shared C/20 discharge capacity (always at 40 °C) Open Blind Open Open < C/3, C/2, 1C discharge Blind Open Open Open Blind data not Blind C/20 charge and discharge Open Open Open shared, only used Open Blind Open Open HPPC test with four pulse magnitudes Blind for testing Blind Blind Blind UDDS, HWFET, LA92, US06 drive cycles Blind Open Eight reordered drive cycles Open Open 1 Blind, 1 Open 1 Blind, 1 Open Blind 1 Blind, 1 Open Two HWCUST drive cycles 1 Blind, 1 Open Blind 1 Blind, 1 Open 1 Blind, 1 Open Two HWGRADE drive cycles

Description of Battery Experiments

For complete details, see ITEC 2022 paper for description of test cases: P. J. Kollmeyer, M. Naguib, F. Khanum and A. Emadi, "A Blind Modeling Tool for Standardized Evaluation of Battery State of Charge Estimation Algorithms," *2022 IEEE Transportation Electrification Conference & Expo (ITEC)*, 2022, pp. 243-248, https://doi.org/10.1109/ITEC53557.2022.9813996

Tests on Blinded Data for Validating Model Performance

- Tool provided for submitting and testing models (see section 4 of presentations)
- Following tests performed on submitted models:

Test	Description	Data			
1	All cells	All cells, all drive cycles			
2	Blinded cell	Blinded m448 cell, all drive cycles			
3	Non-Blinded cells	Non-blinded m80, m448-N, m1000 cells, all drive cycles			
4	Charging	Charge data, m80 cell			
5	Range of Vehicle Masses	Compare m80, m448, m1000 test cases, all drive cycles			
6	HVAC On/Off	m448 cell (HVAC On) compared to m448-N cell (HVAC Off)			
7	Standard Drive Cycles	UDDS, HWFET, LA92, US06 for m1000 cell			

Test	Description	Data			
Non-Standard Drive		HWCUST, HWGRADE for m1000			
0	Cycles	cell			
o Range of		Compare -20, -10, 0, 25, 40 °C test			
9	Temperatures	cases, m80cell			
10	Initial SOC Error	Emulate initial SOC error via test			
	Initial SOC EII0	case starting at SOC other than 100%			
11	Current Sensor	Current sensor offset error added for			
	Offset	multiple cases			
		Gain, offset, noise error added to			
12	Robustness	voltage, current, or temperature			
		measurement for multiple cases			

Data Structure

- Open data provided in "1-Open Data" folder
- Organized by cell (m80, m448n, m1000, see earlier slide for description)
- Separate folders for each temperature (40C, 25C, etc) and for characterization and drive cycle data

□ Name	Status	Date modified	Туре	Size
1 1-21_01.30 Tesla_0C_DriveCycles_Ch4 9_CC_CV_charge_10-11-21_01.30 Tesla_0C_DriveCycles_Ch4	O	3/18/2022 8:56 PM	MATLAB Data	797 KB
10_REORDERED1_10-10-21_20.11 Tesla_0C_DriveCycles_Ch4	⊘	3/18/2022 8:56 PM	MATLAB Data	986 KB
11_CC_CV_charge_10-11-21_01.30 Tesla_0C_DriveCycles_Ch4	⊘	3/18/2022 8:56 PM	MATLAB Data	797 KB
12_REORDERED2_10-11-21_12.10 Tesla_0C_DriveCycles_Ch4	⊘	3/18/2022 8:56 PM	MATLAB Data	947 KB
13_CC_CV_charge_10-11-21_17.17 Tesla_0C_DriveCycles_Ch4	⊘	3/18/2022 8:56 PM	MATLAB Data	725 KB
14_REORDERED3_10-12-21_02.37 Tesla_0C_DriveCycles_Ch4	O	3/18/2022 8:56 PM	MATLAB Data	945 KB

Example Data Files

See "readme.txt" for full description of files and naming conventions

Example Data: Drive cycles for m80 cell at -10°C

ENGINEERING

BRIGHTER WORLD | CERC® MARC

HPPC Test Explanation

One HPPC charge and discharge pulse

Description of complete procedure

The HPPC tests consist of four ten second discharge and charge pulses in the following order, with 0.3C pulses in between to return SOC to prior value. The 0.3C return pulses are to ensure that each 10s charge and discharge pulse is performed at the exact same SOC:

1.	Discharge cell at 0.3C until SOC reaches specified value (i.e. 95% SOC)
2.	Pause one hour
3.	C/2 10s discharge pulse
	 Pause 20s
	 0.3C charge until SOC returned to value for this step (i.e95% SOC)
	 Pause 20s
4.	C/8 10s charge pulse
	 Pause 10s
	 0.3C discharge until SOC returned to value for this step (i.e95% SOC)
	 Pause 10 minutes
5.	1C 10s discharge pulse
	 Pause 20s
	 0.3C charge until SOC returned to value for this step (i.e95% SOC)
	 Pause 20s
6.	C/4 10s charge pulse
	 Pause 10s
	 0.3C discharge until SOC returned to value for this step (i.e95% SOC)
	 Pause 10 minutes
7.	2C 10s discharge pulse
	 Pause 20s
	 0.3C charge until SOC returned to value for this step (i.e. 95% SOC)
	 Pause 20s
8.	C/3 10s charge pulse
	 Pause 10s
	 0.3C discharge until SOC returned to value for this step (i.e95% SOC)
	 Pause 10 minutes
9.	3C 10s discharge pulse
	 Pause 20s
	 0.3C charge until SOC returned to value for this step (i.e. 95% SOC)
	 Pause 20s
10.	C/2 10s charge pulse
	 Pause 10s
	 0.3C discharge until SOC returned to value for this step (i.e .95% SOC)
	 Pause 10 minutes

Open Circuit Voltage (OCV)

- OCV often needed for Kalman filter and other equivalent circuit based SOC estimation methods
- OCV is derived from two different tests and provided in "Characterization Test Plots_m80.xlsx", as shown in the following plots:

Users my find they are better off deriving OCV from the test data in other ways, this OCV data is just provided as an example

BRIGHTER WORLD | CERC®MARC

Padding of Test Data

- Testing tool adds one hour of padded data prior to all test cycles applied to algorithms
- Ensures that algorithms are not impacted by lack of initial data
 - For example, recurrent neural networks or algorithms which filter voltage need initial data

Presentation Summary

Table of Contents

1. Battery Data

2. File Concatenation Tool

3. Example SOC Estimator

4. Blind Test Submission Tool

File Concatenation Tool

- Concatenates multiple individual test files into a single file -
 - Tool can be helpful to create larger files of contiguous data for training and testing machine learning algorithms or for testing Kalman filter type algorithms
- Provided in "2-File Concatenation Tool" folder
- To use tool, open folder in Matlab, open and run "ConcatenateFilesByName.m"

Presentation Summary

Table of Contents

1. Battery Data

2. File Concatenation Tool

3. Example SOC Estimator

4. Blind Test Submission Tool

LSTM SOC Estimator Example

• MATLAB script for training LSTM SOC estimator, in "3-Example SOC Estimation Training Algorithm" folder

<u>To run example training:</u>

- 1. Open folder in MATLAB
- 2. Paste "LSTM_Training_Algorithm(10,5,0.01,20,0.85,1,1,1,1)" into command window and press enter

Window Which Appears When Running Training

10 epochs training should take less than 10 minutes

See "readme.txt" in "3-Example SOC Estimation Model" folder for full description of LSTM example

• Note: The example LSTM was not found to achieve very good accuracy, may not be a good option for estimating SOC of these battery cells

ENGINEERING

Presentation Summary

Table of Contents

1. Battery Data

2. File Concatenation Tool

3. Example SOC Estimator

4. Blind Test Submission Tool and Results

Steps for Submitting Model for Blind Testing

- Step 1: Format SOC estimator as Model.m or Model.p Matlab function
- Step 2: Create Settings.xlsx file
- Step 3: Zip files into *Blind_Model.zip*
- Step 4: Test *Blind_Model.zip* using *SOC_Estimator_Test_Script.m*
- Step 5: After testing zip file with script from Step 4, upload zip file via online form
- Step 6: Email sent to author confirming submission
- Step 7: Email sent to author with results
- Step 8: View results sent in Error Summary.zip

Step 1: Format model as Model.m or Model.p Matlab function

- Input Data (measured): X
 - T x 3 array, where T is length of test data in seconds
 - Current, voltage, and temperature
 - 1 Hz sample frequency
 - Each row is 1 second

- Output Data (estimated): Y
 - T x 1 array, where T is length of test data in seconds
 - SOC, from 0 (0%) to 1 (100%)
 - 1 Hz sample frequency
 - Each row is 1 second

What is a p-code (.p) file?

- A p-code file is a *content obscured executable file*: <u>https://www.mathworks.com/help/matlab/ref/pcode.html</u>
- Create .p version of a .m file by typing pcode model.m for example in the Command Window
- Use *.p* files if you want to obscure your source code
- All code submitted to the blind model tool will be kept confidential and will only be used to determine the results

Step 1: Example Coulomb Counting Function

%Coulomb Counting SOC Estimator - McMaster University 2022
[function [Y_est] = Model(X)

```
% Input X: Measured current, voltage, and temperature values
% X: 3 columns, T rows, where T is length of input data in seconds
Current = X(:,1); % Amps, column 1
% Current: negative-discharging, positive-charging
Voltage = X(:,2); % Volts, column 2
Temperature = X(:,3); % degrees Celsius, column 3
Time = (0:1:(length(Current)-1))'; % seconds
```

```
%Coulomb Counting SOC Estimator
SOC_Init = 1; %Assume battery always starts fully charged
Capacity = 4.6; %Ah, Nominal capacity of new Tesla 21700 NMC/NCA cell
```

```
%Coulomb counting: SOC = integral of current
for i=1:length(Time)
```

%Output Y: Estimated SOC %Y: 1 columns, T rows, where T is length of input data in seconds Y_est=SOC'; %Transpose SOC from columns to rows -end

See folder:

Example 1 - Coulomb Counter

Step 1: Example LSTM Machine Learning Function

```
%LSTM Neural Network SOC Estimator - McMaster University 2022
[ function [Y_est] = Model(X)
```

```
%Normalize input data X to normalization used for trained network
MAX = [15, 4.5, 51];
MIN = [-19, 2.5, -27];
X(:,1) = ((X(:,1) - MIN(1))./(MAX(1)-MIN(1)));
X(:,2) = ((X(:,2) - MIN(2))./(MAX(2)-MIN(2)));
X(:,3) = ((X(:,3) - MIN(3))./(MAX(3)-MIN(3)));
```

%Reorder and transpose X data to match neural network format

X reordered = [X(:,2), X(:,1), X(:,3)]';

See folder:

Example 2 - Recurrent Neural Network

```
%Load trained network parameters
load("Trained_LSTM_Network_Parameters.mat");
%Estimate SOC
[updatedNet_Pr] = predictApdUpdateState(NETS[1,1], X_recordered
```

```
[updatedNet,Pr] = predictAndUpdateState(NETS{1,1},X_reordered(:,1:100));
Y_est = predict(updatedNet, X_reordered(:,:))';
end
```


Step 2: Create Settings.xlsx file

- Save file as "Settings.xlsx"
- Data in file includes
 - Author Name: Cell B1
 - Author Affiliation: Cell B2
 - Author Email Address: Cell B3
 - Model Name: Cell B4

Example file – cells must be the same, all fields must be occupied

	A	В
1	Author Name	Phillip Kollmeyer
2	Author Affiliation	McMaster University
3	Author Email	kollmeyp@mcmaster.ca
4	Model Name	Coulomb Counter

Step 3: Zip files into *Blind_Model.zip*

Zip files directly to *Blind_Model.zip*

Zip files directly

Do not place files in folder and zip folder

- Zipped folder cannot include any sub folders
- Must include files named Model.m and Settings.xlsx
- May include other files needed by *Model.m*
- .zip file name does not have to be "Blind_Model"

BRIGHTER WORLD | CERC® MARC

Step 4: Test *Blind_Model.zip* using *SOC_Estimator_Test_Script.m*

a. In Matlab open folder containing SOC_Estimator_Test_Script.m

-	MATLAB R2	2021a -	academic	use			_	[\times
н	P A	E P	P V	Searc	h Doc	umentatio	on	Q	<u>ا</u>	Phil 🔻
FILE		EDIT T	BREAKPC	e 3 - S	RUN T	timator Fu	unction	Test	er	⊼ • <mark>♀</mark> •
Cur	rent Folder							۲	1	🗑
	Name *								+1	Nam
1	Battery_[SOC_Esti	Data.ma mator_ ⁻	it Fest_Script	t.m					12 13 14 15 16 17	() Au ch cu ch file M

b. Open and run SOC_Estimator_Test_Script.m

ENGINEERING

BRIGHTER WORLD | CERC®MARC

Step 4: Test *Blind_Model.zip* using *SOC_Estimator_Test_Script.m*

c. Select .mat file with battery data (Default: Battery_Data.mat)

📣 Select data file					\times
\leftrightarrow \rightarrow \checkmark \uparrow \blacksquare « Si	ub > Example 3 - SOC Estimator Function Tester	\sim	C $>$	Search Exam	ple 3
Organize • New folder			I	· .	?
📒 Example 1 - Coulomb	Name	Status	Date modified	ł	Туре
Example 3 - SOC Estir	1 Battery_Data	•	5/8/2022 2:40	PM	MATL
📁 Final Submitted Paper					
 OneDrive - Personal 					
> 🛄 Desktop					
> 🔛 Documents			_		
-					
File name:	Battery_Data	<u> </u>	MAT-files (*.mat)		~
			Open	Cance	el

BRIGHTER WORLD | CERC®MARC

d. Select folder containing *Blind_Model.zip*

- Two working example folders provided:
 - 📒 Example 1 Coulomb Counter
 - Example 2 Recurrent Neural Network

Step 4: Test *Blind_Model.zip* using *SOC_Estimator_Test_Script.m*

f. Typical errors

Blind_Model.zip not present in selected folder

Error using <u>checkfilename>validateFilename</u> (<u>line 157</u>) Function UNZIP was unable to find file ''Blind_Model.zip''.

Settings.xlsx not present in unzipped contents

Error using **xlsread** (<u>line 136</u>) Unable to open file 'Settings.xlsx'

Model.m not present in unzipped contents

Undefined function 'Model' for input arguments of type 'double'.

Error in SOC_Estimator_Test_Script (line 31)
Y_est = Model(X);

Important: Model must work with SOC_Estimator_Test_Script, otherwise online submission will fail to return a result

BRIGHTER WORLD | CERC®MARC

Step 5: After testing zip file with script from Step 4, upload zip file using the Google Form

Google	Form	for	Uploa	dina	Model
				· · · · · J	

Blind Battery Model Tool
tool.
blindmodelstudy@gmail.com Switch account
The name and photo associated with your Google account will be recorded when you upload files and submit this form. Your email is not part of your response.
.zip upload folder
🚞 Model Tool/Example 1 - Coulomb Counter/Modelzig \vee 🖸
Name Type
Model MATLAB Code
Q Settings Microsoft Excel Worksheet
Upload.zip file with Model.m SOC estimation script, Settings.xlsx file, and any additional files called by Model.m Add file
Submit Clear form

https://forms.gle/qvJHDzVfQaYgEFdg8

Step 6: Email sent to author confirming submission

System Automatically Sends Email Confirming Submission

- · If email is not received within one hour, test system is likely down
- Send email to kollmeyp@mcmaster.ca (Phillip Kollmeyer) requesting support

Step 7: Email sent to author with results

System Automatically Sends Email with Results

- If email is not received within one hour **and** confirmation email (step 6) was received, then the submitted model has an error
- Investigate and correct cause of error and re-submit (see step 4)
- If issue cannot be resolved, send email to <u>kollmeyp@mcmaster.ca</u> (Phillip Kollmeyer) requesting support

Step 8: View results sent in Leaderboard.csv and Error Summary.zip

Error Summary.zip Folder contains results for multiple test cases

Error Summary	~	С			
Name ^				Туре	
Drive_Cycle_Error_Summary_Table				MATLAB Data	
ঌ Test 01 to 08 RMS Error_Bar Plot	MATLAB Figure	MATLAB Figure			
ঌ Test 02 and 03_Blind vs Non-Blind C	MATLAB Figure	2			
ঌ Test 04 Charging and Cycle_Time Do	main l	Plot		MATLAB Figure	2
ঌ Test 07 and 08 Standard vs Non-Stan	Plot MATLAB Figure	2			
ঌ Test 09 Error vs Temperature_Time D	omain	Plot		MATLAB Figure	2
ঌ Test 09 RMS Error vs Temperature_Ba	r Plot			MATLAB Figure	e
ঌ Test 10 Initial SOC Error_Time Domai	n Plot			MATLAB Figure	e
ঌ Test 11 Current Sensor Offset Error_T	îme Do	omain	Plot	MATLAB Figure	2

 See ITEC 2022 paper for complete description of test cases: <u>A Blind Modeling Tool</u> for Standardized Evaluation of Battery State of Charge Estimation Algorithms

ENGINEERING

BRIGHTER WORLD | CERC® MARC

Step 8: View results sent in *Leaderboard.csv*

Leaderboard ranks all submissions by their "weighted" error

Results for Coulomb Counter Example

Test Case		Weighting	RMSE	Weighted Error
2	Blinded Cell	10%	1.4%	0.1%
3	Non-Blinded Cells	10%	2.4%	0.2%
4	Charging (m80)	10%	94.1%	9.4%
5	1000kg Payload (m1000)	10%	2.3%	0.2%
8	Non-Standard Cycles HWGRADE, HWCUST (m1000)	10%	2.8%	0.3%
9	-20°C (m80)	10%	3.3%	0.3%
10	Initial SOC offset 0°C (m80)	10%	45.5%	4.6%
10	Initial SOC offset -20°C (m80)	10%	23.2%	2.3%
11	0.3A offset 10°C (m1000)	10%	24.5%	2.5%
11	-0.1A offset -10°C (m1000)	10%	1.4%	0.1%
			Weighted error	20.1%

Step 8: View results sent in *Leaderboard.csv*

Leaderboard includes:

- Error values for all tests which make up "Weighted Error"
- For all blinded drive cycles: rms, mae, max error

4	А	В	С	D	E	F	G
1	Submission_Time	Author	Affiliation	Model Name	Weighted Error	Test 2	Test 3
2	12/13/2022 18:40	Phillip Kollmeyer	McMaster University	LSTM Neural Network	3.28	1.45	2.87
3	12/13/2022 21:00	Junran Chen	McMaster University	Feedforward Neural Network	4.13	1.29	3.28
4	1/7/2023 17:52	Phillip Kollmeyer	McMaster University	Coulomb Counter	20.14	1.4	2.44

Н	1	J	К	L	М	N	0	Р	Q	R
								All drive		All drive
				Test 10	Test 10	Test 11	Test 11 -	cycles	All drive	cycles max
Test 4	Test 5	Test 8	Test 9	OdegC	-20degC	0.3 A offset	0.1A offset	RMSE	cycles MAE	error
0.92	2.97	3.94	2.17	1.83	6.14	4.58	5.96	2.75	2.17	10.58
1.04	3.5	6.29	5.42	2.41	9.91	4.05	4.08	3.04	2.46	9.69
94.08	2.29	2.8	3.32	45.51	23.23	24.5	1.88	2.38	2.05	3.97

Weighted Error (row 2) = 0.1*sum(F2:O2)

Test 01 to 08 RMS Error_Bar Plot.fig

Charging error high for coulomb counting because charge starts around 0% SOC, and coulomb counting code assumes all test cycles start at 100% SOC McMaster

BRIGHTER WORLD | CERC® MARC

University

Test 02 and 03_Blind vs Non-Blind Cells_Time Domain Plot.fig

Coulomb Counting Example

LSTM more accurate, but somewhat noisy

BRIGHTER WORLD

Test 04 Charging and Cycle_Time Domain Plot.fig

Charging case starts at 0% SOC – causing high error for coulomb counting which assumes 100% SOC at start of file

BRIGHTER WORLD | CERC® MARC

Test 07 and 08 Standard vs Non-Standard Cycles_Time Domain Plot.fig

LSTM performs well, except for HWGRADE where high power results in high error

McMaster University

BRIGHTER WORLD | CERC® MARC

Test 09 Error vs Temperature_Time Domain Plot.fig

Coulomb counting error higher at low temperature due to cell aging (cold temperature tests done last) LSTM error higher at low temperature due to nonlinear, higher resistance of cell at low temperatures

BRIGHTER WORLD | CERC®MARC

McMaster

University

Test 09 RMS Error vs Temperature_Bar Plot.fig

Coulomb counting error higher at low temperature due to cell aging (cold temperature tests done last) LSTM error higher at low temperature due to nonlinear, higher resistance of cell at low temperatures

ENGINEERING

BRIGHTER WORLD | CERC® MARC

Test 10 Initial SOC Error_Time Domain Plot.fig

Coulomb Counting Example

LSTM Example

Coulomb counting can't adjust to initial SOC (assumes 100% at start of file) LSTM is able estimate the correct SOC value

Test 11 Current Sensor Offset Error_Time Domain Plot.fig

Coulomb Counting Example

Coulomb counter integrates current sensor error, LSTM handles offset fairly well at higher temperatures

McMaster University

BRIGHTER WORLD

"Error Summary Table" Figure

Coulomb Counting Example

	Drive_Cycle_Error_Summary_Table								
	132x4 table								
	1 2 3 4								
	Label	RMSE	MAE	MAXE					
1	'UDDS10 ^oC_M80'	3.2260	2.7744	5.5621					
2	'HWFET10 ^oC_M80'	3.3858	2.9177	5.6672					
3	'LA9210 ^oC_M80'	3.2243	2.7581	5.5813					
4	'US0610 ^oC_M80'	3.4232	2.9428	5.7002					
5	'HWCUST210 ^oC_M80'	3.8628	3.3559	6.1761					
6	'HWGRADE210 ^oC _ M80'	3.8796	3.3524	6.2650					
7	'UDDS20 ^oC _ M80'	3.3221	2.8653	5.6698					

LSTM Example

Drive_Cycle_Error_Summary_Table 🛛 🛛

132x4 <u>table</u>

	1	2	3	4	
	Label	RMSE	MAE	MAXE	
1	'UDDS10 ^oC_M80'	1.3161	1.0187	6.5343	
2	'HWFET10 ^oC _ M80'	2.7513	2.3746	9.0097	
3	'LA9210 ^oC _ M80'	1.4657	1.1132	7.6461	
4	'US0610 ^oC _ M80'	1.9980	1.5584	7.3933	
5	'HWCUST210 ^oC _ M80'	2.2954	2.0961	4.4061	
6	'HWGRADE210 ^oC _ M80'	2.8434	2.2003	12.6412	
7	'UDDS20 ^oC _ M80'	2.1709	1.5759	10.4202	

Drive cycle error values can be used for making general comparisons and finding trouble cases (high max error, etc)

